

Mark Scheme (Results)

January 2022

Pearson Edexcel International Advanced Level In Chemistry (WCH14) Paper 01: Rates, Equilibria and Further Organic Chemistry

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2022 Question paper log number P69507A Publications Code WCH14_01_2201_MS All the material in this publication is copyright © Pearson Education Ltd 2022

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. The strands are as follows:

i) ensure that text is legible and that spelling, punctuation and grammar are accurate so that meaning is clear

ii) select and use a form and style of writing appropriate to purpose and to complex subject matter

iii) organise information clearly and coherently, using specialist vocabulary when appropriate

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.

/ means that the responses are alternatives and either answer should receive full credit.

() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.

Phrases/words in **bold** indicate that the <u>meaning</u> of the phrase or the actual word is **essential** to the answer.

ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Section A (multiple choice)

Question Number	Correct Answer	Mark
1(a)	The only correct answer is B $(\frac{1}{2}I_2(s) \rightarrow I(g))$	(1)
	A is incorrect because atomisation of an element is from its standard state and iodine is a solid	
	C is incorrect because atomisation produces 1 mole of atoms and requires solid iodine	
	D is incorrect because atomisation produces 1 mole of atoms	

Question Number	Correct Answer	Mark
1(b)	The only correct answer is A (-298 kJ mol ⁻¹)	(1)
	B is incorrect because this value has had 28 added to -270 rather than subtracted from it	
	C is incorrect because first electron affinity values are always exothermic	
	D is incorrect because first electron affinity values are always exothermic and the wrong sign has been used for the enthalpy change of hydration	

Question Number	Correct Answer	Mark
2	The only correct answer is B (-1650 kJ mol ⁻¹)	(1)
	A is incorrect because this uses the wrong sign for the enthalpy change of solution	
	C is not correct because this uses only one mole of chloride ions	
	D is not correct because this does not change the sign of the lattice enthalpy	

Question Number	Correct Answer	Mark
3(a)	The only correct answer is A (the mole fraction of carbon dioxide)	(1)
	B is incorrect because the equilibrium will move to the left hand side so this will decrease	
	C is not correct because the rate of both reactions will decrease at lower temperature	
	D is incorrect because the equilibrium will move to the left hand side so this will decrease	

Question Number	Correct Answer	Mark
3(b)	The only correct answer is C (0.474)	(1)
	A is incorrect because this answer divides the mole fraction of carbon dioxide by 2	
	B is incorrect because this answer divides the mole fraction of carbon monoxide by 2	
	D is incorrect because this is the partial pressure of carbon monoxide	

Question Number	Correct Answer	Mark
4	The only correct answer is A (dm ⁹ mol ⁻³)	(1)
	B is incorrect because the units of concentration should be raised to the power of -3 not -2	
	C is incorrect because the units should be the reciprocal of concentration raised to the power of -3 not -2	
	D is incorrect because the units should be the reciprocal of concentration raised to the power of -3 not -2	

Question Number	Correct Answer	Mark
5	The only correct answer is D (phenolphthalein)	(1)
	A is incorrect because the indicator needs a range contained between pH 8 and pH 11	
	B is incorrect because the indicator needs a range contained between pH 8 and pH 11	
	<i>C</i> is incorrect because the indicator needs a range contained between pH 8 and pH 11	

Question Number	Correct Answer	Mark
6	The only correct answer is A (the dissociation of water is endothermic, so the concentration of hydrogen ions is higher at 100°C than it is at 25°C)	(1)
	B is incorrect because at higher temperatures more hydrogen ions are present	
	C is incorrect because the dissociation of water is endothermic	
	D is incorrect because the dissociation of water is endothermic	

Question Number	Correct Answer	Mark
7	The only correct answer is C (C ₁₆ H ₁₄ O ₃)	(1)
	A is incorrect because there are 16 carbon atoms in ketoprofen	
	B is incorrect because this answer has one hydrogen too few	
	D is incorrect because this answer assumes there is 1 hydrogen on each carbon in the benzene rings	

Question Number	Correct Answer	Mark
8	The only correct answer is C (3)	(1)
	A is incorrect because there are three chiral centres	
	B is incorrect because there are three chiral centres	
	D is incorrect because there are three chiral centres	

Question Number	Correct Answer	Mark
9	The only correct answer is D (propanone with HCN)	(1)
	A is incorrect because the product, 2-chlorobutane, is chiral and each enantiomer is formed in equal amounts	
	B is incorrect because the product, 2-chlorobutane, is chiral and each enantiomer is formed in equal amounts	
	<i>C</i> is incorrect because the product, 2-hydroxybutanenitrile is chiral and each enantiomer is formed in equal amounts	

Question Number	Correct Answer	Mark
10	The only correct answer is C (the reaction proceeds via a carbocation intermediate)	(1)
	A is incorrect because while it is true, it does not explain the observation	
	B is incorrect because this would lead to only one enantiomer	
	D is incorrect because while this is true, it does not explain the observation	

Question	Correct Answer	Mark
Number		
11	The only correct answer is C (4)	(1)
	A is incorrect because there are 4 aldehydes with this molecular formula that are structural isomers	
	B is incorrect because there are 4 aldehydes with this molecular formula that are structural isomers	
	D is incorrect because there are 4 aldehydes with this molecular formula that are structural isomers	

Question Number	Correct Answer	Mark
12(a)	The only correct answer is D (CH ₃ COCH ₂ I CHI ₃)	(1)
	A is incorrect because CH ₃ I is not formed in acidic conditions	
	B is incorrect because CH ₃ COCI ₃ is not formed in acidic conditions	
	<i>C</i> is incorrect because CH_3I is not formed in alkaline conditions	

Question Number	Correct Answer	Mark
12(b)	The only correct answer is C (2.5)	(1)
	A is incorrect because the value of the pH has been divided by 3	
	B is incorrect because the concentration of H^+ ions has been multiplied by 3 rather than divided	
	D is incorrect because this value is adding 1/3 of 2 onto 2	

Question Number	Correct Answer	Mark
13	The only correct answer is D (HOCH ₂ CH(OH)CH ₂ CH ₂ OH hot acidified K ₂ Cr ₂ O ₇)	(1)
	A is incorrect because the compound W is correct but LiAlH ₄ is a reducing agent	
	B is incorrect because both the compound W and reagent are incorrect	
	C is incorrect because the compound W is the wrong compound	

Question Number	Correct Answer	Mark
14	The only correct answer is C ((CH ₃) ₂ CHCOOCH ₂ CH ₃)	(1)
	A is incorrect because this product could not be formed as compound Y must have 4 carbon atoms and the ester Z must be formed from ethanol	
	B is incorrect because this product could not be formed as compound Y must have 4 carbon atoms and the ester Z must be formed from ethanol	
	D is incorrect because this product could not be formed as compound Y must have 4 carbon atoms and the ester Z must be formed from ethanol	

Question Number	Correct Answer	Mark
15	The only correct answer is B (C ₃ H ₇ OH)	
	A is incorrect because the alcohol formed would be C ₃ H ₇ OH	
	C is incorrect because no carboxylic acid is formed under these reaction conditions	
	D is incorrect because the sodium salt of ethanoic acid would be formed	

Question Number	Correct Answer	Mark
16	The only correct answer is B (forces of attraction to the liquid)	(1)
	$oldsymbol{A}$ is incorrect because these do not affect passage through the stationary phase	
	C is incorrect because this is not the main reason and does not directly affect passage through the stationary phase	
	D is incorrect because these do not affect passage through the stationary phase	

Question Number	Correct Answer	Mark
17	The only correct answer is D (Liquid Solid)	(1)
	A is incorrect because high performance liquid chromatography has a liquid mobile phase	
	B is incorrect because high performance liquid chromatography has a liquid mobile phase	
	C is incorrect because high performance liquid chromatography has a solid stationary phase	

(Total for Section A = 20 marks)

Section E				
Question	Answer		Additional Guidance	Mark
Number				
18(a)(i)	An answer that makes reference to the following points:			(4)
	• order with respect to H ⁺ is 2		Accept [H ⁺] ²	
	and			
	order with respect to Br^- is 1	(1)	Accept [Br ⁻] ¹ / [Br ⁻]	
	 (in experiments 1 and 2 the concentration of bromide ions and bromate ions remains constant) while the concentration of hydrogen ions doubles and rate quadruples (so hydrogen ion is order 2) 	(1)	Allow mathematical solutions of ratios to give the order	
	 (in experiments 1 and 3) the concentration of bromate ions increases 1.5 times and the concentration of bromide ions doubles (whilst the concentration of hydrogen ions stays constant). Rate increases by 3 times (so bromide ion is order 1) 	(1)	In experiments 3 and 4 the concentration of bromide ions halves and the concentration of hydrogen ions doubles (whilst the concentration of bromate ions doesn't change.) The rate doubles (so bromide ion is order 1.)	
	• rate = $k [BrO_3^-][Br^-][H^+]^2$	(1)	ALLOW TE on incorrect orders deduced	
			M2 and M3 can be given even if resulting orders are incorrect Allow annotations on table	

Question Number	Answer		Additional Guidance	Mark
18(a)	An answer that makes reference to the following points:		Example calculation	(3)
	 expression for k rearranged 	(1)	$k = \underline{rate}$ [BrO ₃][Br ⁻][H ⁺] ²	
			OR	
			$k = \frac{2.01 \times 10^{-4}}{0.15 \times 0.25 \times 0.60^2}$	
	• value of <i>k</i>	(1)	$k = 0.014889 / 0.015 / 1.4889 \times 10^{-2} / 1.5 \times 10^{-2}$	
	• units	(1)	dm ⁹ mol ⁻³ s ⁻¹	
			ALLOW TE on (a)(i) Allow units in any order Allow sec for seconds	
			ALLOW use of other experimental data instead of experiment 4	
			IGNORE SF except 1SF	
			Correct answer with no working scores (2)	
			Correct answer with no working and correct units scores (3)	

Additional Guidance	Mark
	(1)
e number of particles in the rate does not match the equation for ion	
e chances of collisions of 3 / 4 / rticles is unlikely	
ccept other numbers of particles	
omparison of numbers of particles of I ions in the equation of the reaction e rate equation / order of reaction, r ⁻] in the equation but only 1 in the ation	
nolecules / ions / species / ations instead of particles	
E for comparison on (a)(i) and	
ccept other numbers of partic omparison of numbers of part l ions in the equation of the r e rate equation / order of rea r] in the equation but only 1 ation nolecules / ions / species / ations instead of particles	ticles of reaction action, in the

(Total for Question 18 = 8 marks)

uestion lumber	Answer	Additional Guidance	Mark
9(a)(i)	An answer that makes reference to the following points: Step 1		(4)
	• lone pair of electrons on C of $C \equiv N$		
	 curly arrow from anywhere on the C of C≡N to C in propanal including the charge 	δ- ĒC≡N	
	 curly arrow from C=O bond to or just beyond O 		
	 dipole on C=O 		
	Step 2		
	• lone pair on O in intermediate Step 1 or Step 2	H H H	
	 curly arrow from the O (or minus charge) of intermediate to H of H-C≡N 	н—с́—с́—с́—о́о-	
	• curly arrow from H-C bond to C of H-C \equiv N	Ĥ Ĥ Ċ≡N	
		All 7 points scores 4 marks 5 or 6 points scores 3 marks 3 or 4 points scores 2 marks 2 points scores 1 mark Ignore formula of products even if incorrect Ignore all dipoles on HCN Penalise dipoles on C-O in the intermediate	

Question Number	Answer		Additional Guidance	Mark
19(a)(ii)	An explanation that makes reference to the following points:			(2)
	 the value of K_a / dissociation is (very) small / the equilibrium lies (very) well to the left 	(1)	Allow it is a (very) weak acid Allow it is partially dissociated	
	 so the concentration of CN⁻ ions is (very) low / there is a lack of CN⁻ ions 	(1)	Allow a comment that all / most CN ⁻ in the reaction come from KCN	
			Ignore references to K_a of KCN Ignore references to rate of dissociation	

Question Number	Answer		Additional Guidance	Mark
19(a)(iii)	An answer that makes reference to the following points:			(2)
	 (it increases the rate of reaction by) providing CN⁻ ions in the same phase/state 	(1)	Ignore incorrect phases	
	 and it / KCN / CN⁻ ion is regenerated in Step 2 (so overall is not used up in the reaction) 	(1)	Allow it is regenerated at the end (of the reaction) Ignore references to adsorbing and desorbing	
			If no other mark is scored for it is in the same phase/state and is not used up (1) OR A homogeneous catalyst / KCN is in the same phase/state and speeds up the reaction/provides an alternative pathway with lower activation energy (1)	

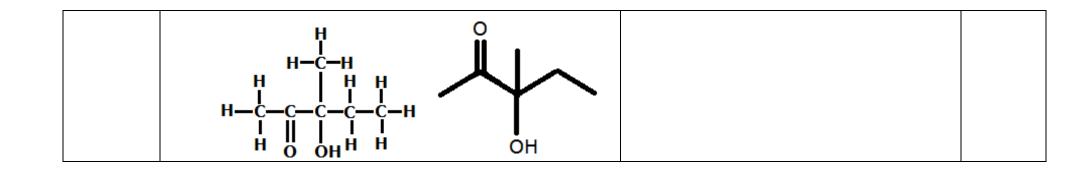
Question Number	Answer		Additional Guidance	Mark
19(b)	 a three-dimensional diagram of 2-hydroxybutanenitrile showing at least one dotted bond and at least one wedged bond which are next to each other 	(1)	Allow just a three dimensional diagram of 2- hydroxybutanenitrile showing at least one dotted and one wedged bond	(2)
	the mirror image of the first structure	(1)	Diagrams may show a mirror / plane of symmetry though this is not necessary $\begin{array}{c} CH_3CH_2 \\ NC \\ \hline \\ NC \\ \hline \\ OH \\ \hline \\ OH \\ \hline \\ HO \\ \hline \\ HO \\ \hline \\ CN \\ \hline \\ HO \\ \hline \\ CN \\ \hline \\$	

	Ignore connectivity errors Allow TE in M2 for incorrect compounds	
	(Total for Question 19 = 10 marks)	5)

Question Number	Answer	Additional Guidance	Mark
20(a)(i)	An answer that makes reference to the following points:		(1)
	• $K_a = [C_5H_{11}COO^-][H^+]$ [C ₅ H ₁₁ COOH]	Accept $[CH_3CH_2CH_2CH_2CO_2^-]$ and $[CH_3CH_2CH_2CH_2CO_2H]$ Accept $[H_3O^+]$ instead of $[H^+]$ Accept other representations of the chain of hexanoic acid / hexanoate ion, such as $[CH_3(CH_2)_4COO^-]$ Ignore equation for dissociation Do not award $[H^+]^2/[C_5H_{11}COOH]$ Do not award brackets that are not square brackets Do not award molecular formulae	

Question Number	Answer		Additional Guidance	Mark
20(a)(ii)			Example calculation	(4)
	 uses expression for pK_a 	(1)	$K_{a} = 10^{-pK_{a}} / K_{a} = 10^{-4.88} / pK_{a} = -\log_{10}K_{a} / 4.88 = -\log_{10}K_{a} / K_{a} = 0.000013183 / 1.3183 \times 10^{-5}$	
	• use of <i>K</i> _a expression	(1)	$10^{-4.88} / 1.3183 \times 10^{-5} / 0.000013183 = \frac{[H^+]^2}{0.1}$	
	 rearrange and solve for H⁺ 	(1)	$[H^+] = \sqrt{0.000013183 \times 0.1} = 0.0011482 / 0.00115 / 1.1482 \times 10^{-3} / 1.15 \times 10^{-3} (mol dm^{-3})$	
	• find pH	(1)	$pH = -log_{10}[H^+] = 2.94 / 2.9400$	
			Do not award M4 with units	
			Final correct answer with no working scores (4) Final correct answer scores (4)	
			Allow TE at each stage Omitting the square root gives 5.88 scores (3) Use of 4.88 for K_a gives 0.1558 scores (3)	
			Ignore SF except 1 SF	

Question Number	Answer		Additional Guidance	Mark
20(a)(iii)	An answer that makes reference to the following points:		All marks may be scored with a diagram or diagrams	(3)
	 hexanoic acid forms more hydrogen bonds (per molecule) with water than butyl ethanoate does 	(1)	Allow hexanoic forms two hydrogen bonds per molecule but butyl ethanoate forms only one	
	 hexanoic acid has an -OH group which forms hydrogen bonds (with water) 	(1)		
	 butyl ethanoate / hexanoic acid has a C=O group which forms hydrogen bonds (with water) 	(1)	Ignore references to the strength of the hydrogen bonds Ignore all references to other intermolecular forces	


Question Number	Answer			Additiona	l Guidance		Mark
20(b)(i)			Example calc	ulation			(3)
	 calculate mass of oxygen 	(1)	Mass of $O = 3$	10 - 6.21 - 1.0	3 = 2.76(g)		
	 divides masses by atomic mass 	(1)	Element Mass	C 6.21	H 1.03	0 2.76	
	 divides by smallest to find the simplest ratio 		Mass / Atomic Mass	6.21 / 12 = 0.5175	1.03 / 1 = 1.03	2.76 / 16 = 0.1725	
	and		Ratio	3	6	1	
	correct empirical formula	(1)	C₃H₀O				
			Correct answers (3)	er with mass/a	tomic mass r	atios calculated	
			Do not award	$C_6H_{12}O_2$ stated	d as empirical	formula	
			Ignore SF				
			Ignore refere formula	nce to $C_6H_{12}O_2$	after finding	empirical	
			Allow 1 mark of oxygen	for CH ₂ deduce	ed without fin	ding the mass	
				mark for incorr ctly by atomic		f oxygen	
			Correct answ	er with no wor	king scores (1	L)	

Question Number	Answer	Additional Guidance	Mark
20(b)(ii)	 An answer that makes reference to the following points: molecular ion peak / peak at highest mass will be at twice the mass of the empirical formula / will be at 116 	Ignore references to n.m.r or i.r.	(1)

Question Number	Answer			Additional guidance	Mark
20(b)(iii)	coherent and log fully-sustained re Marks are awarde answer is structu The following tab awarded for indic Number of indicative marking points seen in answer 6 5-4 3-2 1 0 The following tab	easoning. ed for indicative co red and shows lin ole shows how the	nswer with linkages and ontent and for how the es of reasoning. marks should be	Guidance on how the mark scheme should be applied: The mark for indicative content should be added to the mark for lines of reasoning. For example, an answer with five indicative marking points that is partially structured with some linkages and lines of reasoning scores 4 marks (3 marks for indicative content and 1 mark for partial structure and some linkages and lines of reasoning). If there are no linkages between points, the same five indicative marking points would yield an overall score of 3 marks (3 marks for indicative content and no marks for linkages).	(6)

	Number of marks awarded for structure of answer and sustained line of reasoning	If there is any incorrect chemistry, deduct mark(s) from the reasoning. If no reasoning mark(s) awarded, do not deduct mark(s).
Answer shows a coherent and logical structure with linkages and fully sustained lines of reasoning demonstrated throughout.	2	
Answer is partially structured with some linkages and lines of reasoning.	1	
Answer has no linkages between points and is unstructured.	0	

Indi	cative content	
•	IP1 Misty fumes suggest OH group present	Accept alcohol or carboxylic acid group present (must state both)
•	IP2 Orange precipitate suggests a carbonyl group is present (so no carboxylic acid, must be alcohol)	Accept ketone or aldehyde present (must state both Ignore C=O is present
•	IP3 (Negative) Benedict's / Fehling's reagent suggests no aldehyde group present / a ketone is present	Accept just 'no oxidisable groups present / cannot be oxidised' in either IP3 or IP4 but not both
•	IP4 Acidified potassium dichromate(VI) suggests not a primary, a secondary alcohol or an aldehyde present	Allow tertiary alcohol is present Accept just no primary or secondary alcohol present Ignore references to ketone and carboxylic acid giving no result
•	IP5 Polarimetry indicates a chiral centre is present / it is a chiral molecule	Ignore $S_N 2$ Allow 4 different groups on a carbon Allow optically active Allow contains a single enantiomer
•	IP6 Structure of 3-hydroxy-3-methylpentan-2-one	Allow the correct name Allow displayed or structural formula or combinations Allow contractions such as CH ₃ - C ₂ H ₅ -

Question Number	Answer		Additional Guidance	Mark
20(c)	An answer that makes reference to the following points:			(2)
	 a structure containing two –OH groups ((1)	Do not award an -OH group and a -COOH group Award this mark even if the structure does not contain a ring of six atoms.	
	• correct structure ((1)	HOOH	
			Structure may be skeletal or displayed or a mixture, as long as it is clear. Allow, for example, a displayed formula with condensed CH ₂ .	
			Ignore connectivity of -OH	

(Total for Question 20 = 20 marks)

Question Number	Answer	Additional Guidance	Mark
21(a)(i)		Example calculation	(4)
	 calculates moles of acid present in the mixture (1) 	mol of acid = mol of NaOH = $\frac{34.8}{1000}$ x 2.50 = 0.087 (mol)	
	 calculates moles of ester and water present in the mixture (1) 	mol of ester = mol of water = $0.2 - 0.087 = 0.113$ (mol)	
	 calculates moles of ethanol present in the mixture (1) 	mol of ethanol = $0.150 - 0.113 = 0.037$	
	present in the mixture (1)	If the expression for Kc is incorrect, e.g. no water, allow TE on M1-3 for example not calculating moles of water as well as ester	
	 expression for K_c and final answer 	$ \begin{aligned} \mathcal{K}_{c} &= \ \underline{0.113/V \ x \ 0.113/V}_{0.087/V \ x \ 0.037/V} &= \ 3.9668 \ / \ 4.0 \ \text{(no units)} \\ \text{OR} \end{aligned} $	
		$K_{c} = \frac{[CH_{3}COOC_{2}H_{5}][H_{2}O]}{[CH_{3}COOH][C_{2}H_{5}OH]} = 3.9668 / 4.0$ and statement that volumes cancel	
		Do not penalise lack of square brackets in equilibrium expression	
		Assumption that 0.087 is moles of acid used gives moles ethanol = 0.063 moles ester = water = 0.087 Kc = 1.0632 scores max (3)	
		Calculation of acid moles at equilibrium larger than acid moles at the start can score M4 only	
		If no other mark is scored Award (1) for calculation of 0.087(mol) however it is used, Ignore SF	

Question Number	Answer	Additional Guidance	Mark
21(a)(ii)	An answer that makes reference to the following points:		(2)
	 same type of / similar bonds being broken (1) and made 	Allow O-H and C-O bonds being broken and made Allow the same bond being broken and made Allow C-OH Ignore C-O-H and COH Ignore CO without the bond shown	
	 same number of each type of bond being (1) broken and made 	 Award 2 marks for a complete list of the bonds being broken and made e.g. Bonds broken and made are 1 x C-O and 1 x O-H scores 2 Allow ester link as C-O If no other mark is scored award 1 mark for 1 O-H bond is broken and made Or 1 C-O bond is broken and made If no other mark is scored allow the energy required to break the bonds is similar to the energy released making the bonds for (1) 	

Question Number	Answer	Additional Guidance	Mark
21(b)(i)	• methanoic acid	All three correct scores (2) Any two correct scores (1)	(2)
	 (concentrated) sulfuric acid 	Allow hydrochloric acid / H ₂ SO ₄ / HCl Ignore H ⁺ Ignore (aq) after formulae Ignore hydrogen chloride in words	
	2-methylpropan-1-ol	Allow methylpropan-1-ol Allow 2-methyl-1-propanol Allow methyl-1-propanol Do not award 2-methylpropanol	

Question Number	Answer		Additional Guidance	Mark
	Any and advantage			(4)
21(b)(ii)	Any one advantage:			(4)
	 no heat required / works at room temperature 	(4)	Account the succession is (noweds)	
		(1)	Accept the reaction is (much)	
	 so reduces energy cost 		faster	
		(1)	 so no energy required 	
	or			
	 no catalyst required 			
		(1)		
	 reducing product purification costs / making 			
	purification easier / no need to recover catalyst			
		(1)	Ignore just lower cost	
	or			
	 reaction is not an equilibrium / reaction goes to 			
	completion	(1)		
		• •		
	 so produces a higher yield 	(1)	Ignore more product	
		(-)	Allow reactants are not wasted	
	Any one disadvantage:			
	 hydrogen chloride produced is acidic / corrosive 	(1)		
		(1)		
	- correction registent plant/aquinment required (which			
	 corrosion resistant plant/equipment required (which is more expensive) 	(4)		
	is more expensive)	(1)		
	or			
	HCl is toxic	(1)		
	 use a fume cupboard / clean exhaust gases / capture 			
	the gas (for sale)	(1)		
			Ignore reference to atom economy	
			(Total for Question 21 = 12 ma	rks)

(Total for Question 21 = 12 marks) (Total for Section B = 50 marks)

Question Number	Answer	Additional Guidance	Mark
22(a)	 states or uses equation calculate S^e_{products} 	$\Delta S^{\circ}_{system} = S^{\circ}_{products} - S^{\circ}_{reactants}$ -98.0 = $S^{\circ}_{products} - ((0.5 \times 192) + (1.5 \times 131))$ $S^{\circ}_{products} = 292.5 - 98$ $S^{\circ}_{products} = (+)194.5 / 195 (J K^{-1} mol^{-1})$	(2)
		If units are given they must be correct Allow TE on incorrect $S^{e}_{reactants}$ Comment Correct answer with no working scores (2) $S^{e}_{products} = 63.5$ scores max (1) $S^{e}_{products} = 225$ scores max (1)	

Question Number	Answer		Additional Guidance	Mark
22(b)	 5 points plotted on the graph to within one square 	(1)		(2)
	 straight line of best fit passing through all points 	(1)	$\begin{array}{c} 0.08 \\ 0.06 \\ 0.04 \\ 0.02 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	

Question Number	Answer	Additional Guidance	Mark
22(c)(i)	An answer that makes reference to the following points:	Example of calculation	(1)
	 uses the line or points from the data to calculate the gradient and units 	Gradient = $\frac{8.27 \times 10^{-2}0.76 \times 10^{-2}}{4.00 \times 10^{-3} - 2.00 \times 10^{-3}}$	
		= 45.15 kJ mol ⁻¹	
		Allow an answer between 42.0 - 48.0 Ignore SF except 1 SF	

Question Number	Answer	Additional Guidance	Mark
22(c)(ii)	 An answer that makes reference to the following points: enthalpy change of reaction / △_rH (of the Haber process) 	Allow $-\Delta_r H$ Allow enthalpy change / ΔH / $-\Delta H$	(1)

Question Number	Answer	Additional Guidance	Mark
Number 22(c)(iii)	An answer that makes reference to the following points: • value of <i>T</i> found either by reading from the graph the value of <i>T</i> when $\Delta S_{\text{total}} = 0$ or	460 (K) Allow an answer between 440 - 480	(1)
	by calculation	= $\frac{\text{answer to (c)(i)}}{98}$ = $\frac{45150}{98}$ = 460.71 / 460 (K) Or = $-\frac{\text{answer to (b)}}{-98}$ = $-\frac{45150}{-98}$ = 460.71 / 460 (K) -98 ALLOW TE on graph or on answer to (c)(i)	

Question Number	Answer	Additional Guidance	Mark
22(d)(i)	• total entropy, $\Delta S = R \ln K$		(1)
	or		
	$\ln K = \Delta S / R$		
	or K= $e^{\frac{\Delta S}{R}}$		

Question Number	Answer		Additional Guidance	Mark
22(d)(ii)			Example of calculation	(2)
			-37.7 = 8.31 x ln <i>K</i>	
	• calculation of ln <i>K</i>	(1)	In <i>K</i> = −4.5367	
	• evaluation of <i>K</i>	(1)	$K = 0.01071 / 1.071 \times 10^{-2}$	
			Final answer with no working scores (2)	
			Allow TE on M1 to M2 No TE on incorrect expression	
			Ignore units Ignore SF except 1 SF	

Question Number	Answer	Additional Guidance	Mark
22(d)(iii)	An answer that makes reference to the following points:		(3)
	Either		
	• $(\Delta S_{\text{total}} \text{ decreases because}) \Delta S_{\text{system}} (\text{and } \Delta H) \text{ do not change with temperature (significantly)}$.)	
	• therefore $\Delta S_{\text{surroundings}}$ must decrease (so that $(\Delta S_{\text{total}} \text{ decreases})$	Allow more negative / less positive	
	• this is because $\Delta S_{\text{surroundings}} = -\Delta H/T$ (so as <i>T</i> increases $-\Delta H/T$ becomes less positive because ΔH is exothermic) (2)	.)	
	Or • the reaction is exothermic and so increasing temperature shits the equilibrium to the left / towards the reactants (3) • the value of K decreases (3) • because ΔS_{total} is proportional to K / $S_{total} = R \ln K$ the value of ΔS_{total} decreases (3)		

Question Number	Answer	Additional Guidance	Mark
22(d)(iv)	 overall conversion to ammonia is increased by recycling unused reactants 	Allow remove the ammonia from the equilibrium / as it is formed Ignore references to catalysts, temperature and pressure	(1)

Question Number	Answer		Additional Guidance	Mark
22(e)(i)				(2)
	 formula of diammonium hydrogenphosphate 	(1)	(NH ₄) ₂ HPO ₄	
	 balanced equation 	(1)	$2NH_3 + H_3PO_4 \rightarrow (NH_4)_2HPO_4$	
		(-)	Allow multiples Allow ions for the product	
			Allow for M2 NH ₃ + H ₃ PO ₄ \rightarrow (NH ₄)H ₂ PO ₄	
			Allow ions for the product	
			No other TE	
			Ignore state symbols even if incorrect	

Question Number	Answer	Additional Guidance	Mark
22(e)(ii)	• $NH_4^+ \Rightarrow NH_3 + H^+$	Allow \rightarrow instead of \rightleftharpoons	(1)
	OR	Do not award reactions reversed	
	• NH_4^+ + $H_2O \Rightarrow NH_3$ + H_3O^+		
		Allow $NH_4^+ + OH^- \rightarrow NH_3 + H_2O$ Allow \rightleftharpoons instead of \rightarrow	
		Ignore state symbols even if incorrect	

Question Number	Answer		Additional Guidance	Mark
22(e)(iii)	 An answer that makes reference to the following points: the mixture contains a large amount/ (large) reservoir of both ammonium ions and ammonia / of NH₄⁺ and NH₃ 	(1)	Do not award incorrect formulae such as NH_3^- in M1 and M2 but allow TE in M3 Ignore comments about acid / base in relation to NH_4^+ / NH_3 unless defined	(3)
	 Either added H⁺ reacts with ammonia to form ammonium ions / H⁺ + NH₃ ≓ NH⁺₄ 		Allow \rightarrow instead of \rightleftharpoons Allow H ₃ O ⁺	
	Or			
	• added H ⁺ combines with OH ⁻ ions in water to form water / H ⁺ + OH ⁻ \rightarrow H ₂ O And			
	ammonia reacts with water to produce OH^-	(1)	Allow \rightarrow instead of \rightleftharpoons	
	ions / $NH_3 + H_2O \rightleftharpoons NH_4^+ + OH^-$		This marking point must include at least one ionic equation	
	 ratio of ammonium ions to ammonia hardly 	(1)	Allow remains constant	
	changes		Allow pH is unchanged / changes very little because added H ⁺ removed and change in concentration of NH_3 and NH_4^+ is small	
L			(Total for Question 22 = 20 ma	rks)
	(Total for Section C = 20 marks)			

(Total for Section C = 20 marks) Total for Paper = 90 marks

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom